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1 Introduction

This report describes the procedure in which harmonic coefficients are ex-
tracted from rotating coil data at MTF. It is well known[1] that a two
dimensional magnetic field may be represented by an analytic function and
expanded about a point according to

B(r,0) = By +iB, = Z erj—lei((j—1)9+xg') (1)

=1

In this equation, the coefficients C; are the harmonic amplitudes and x; are
the harmonic phases. The indices 7 use the convention that 7 = 1 represents

the dipole harmonic, j = 2 the quadrupole, and so on. The units of C; are
in Tesla/m?™*.

Most magnets measured at MTF are designed such that one harmonic,
Cy, is dominant (e.g., n = 1 for dipole magnets). In these cases it is useful
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to express the harmonic amplitudes in dimensionless quantities, c;, called
normalized harmonics:

¢; = (C3/Cn) ™ (2)

The reference radius, 79, is an arbitrary choice, but is usually chosen to be
either the probe radius or some standard value (e.g., 2.54 cm). It is also
useful to express the harmonic phases relative to x,, that is, in a coordinate
system such that x, = 0.

Alternatively, it is often useful to express the harmonics in terms of
normal (b;) and skew (a;) components. These are defined by

bj + iaj = Cjein (3)

2 Flux in Rotating Coils

The generic coil used by MTF is wound on a cylinder of length L and
radius 7. Looking at a cross section of a coil in Figure 1a, the coil intersects
the page at N vertices, where N must be an even number in order to make
a complete coil. The complex coordinate of vertex k is z = re. If
more than a single wire is used (e.g., Litz wire), then there will be M wires
crossing at each vertex. The wires are connected at the ends of the cylinder
so that there is a single conducting path through the entire coil. When the
loop is rotated, a voltage is induced by the flux change in accordance with
Faraday’s Law. The induced voltage causes a current to flow through the
loop. A direction is assigned to each vertex by following the current path
through the loop, with positive direction for current flowing out of the page.

The flux measured by the coil as a function of rotation angle 8 can be
expressed in terms of the complex potentials at each vertex of the coil[2]:

3(6) = —LR i (Cje™3) e (4)

The quantity 7;, called the probe sensitivity, contains all the factors due to
the geometry of the probe. It is equal to

M X g
nj = —r’ Zeke”‘#’“ (5)
J o=
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Rotating Coil Geometries

a) Morgan coil (m=3) b) Tangential colil

/4

b) Dipole-bucked ¢) Quadrupole-bucked

tangential coll tangential coil

Figure 1: Cross sections of typical rotating coils. The dots indicate vertices
with positive €;; crosses indicate vertices having negative ¢;.
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where ¢, is the direction of vertex k (either 4+1 or —1). For convenience, we
define the probe geometry factor, v; to be

- Z ere It = gieti (6)
k=1

Using these definitions, Equation 4 becomes

— _%Z (LC;) (_7.] ) i(x;+€;+36) (7)
Substituting Eq. 2 to express the flux in terms of normalized harmonics,

we have u
)= R (457) (Mrigy) etsissao ®)

where we have defined An = LC, as the integrated reference amplitude.
An additional simplification occurs if we make the “natural” choice for the
reference radius rg by setting it equal to the probe radius:

ERZ( A,rTejg; ) e xi+i+m+36) (9)

In the above, the — sign is absorbed into the exponential as an additional
factor of ir.

3 Fourier Transforms and Harmonic Coefficients

We collect an array of fluxes, ®(6), on K uniformly spaced points in 8, and
perform a Fourier Transform (the FFT code requires that K be a power
of 2). The FFT returns the Fourier coefficients F; = &,¢'¥, which allow us
to expand ®(0) as

K/2

=R et (10)

7=1
Comparing Equations 9 and 10, the harmonic coefficients can be related
to the Fourier coefficients by equating the amplitudes and phases term by
term:

M n
@j = TAHT C;9g; (11)
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and
Y =x;+ &+ (12)

Note that the ®; are fluxes in units of T-m? (alternatively, in volt-seconds;
the two units are equivalent). If the data were acquired with a V/f system,
no conversion is necessary; but if an analog integrator was used, one must
take into account the integrator time constant, probe resistance, and (if
applicable) amplifier gain to convert the data to the correct units.

3.1 Reference amplitude

From Equation 11, and noting that by definition, ¢, = 1, we see that the
reference amplitude is equal to

n®,

A, =
Mg,r™

(13)

The reference phase, Xy, is defined to be zero, but we need the observed
Fourier phase, 1,, in order to determine the phases of the remaining har-
monics.

3.2 Harmonic amplitudes

One could, in principle, obtain all the harmonics with a single coil, but this
is not a good idea in practice, because the dominant harmonic is generally
so much larger than the others. Instead, we use a reference coil to measure
the reference amplitude, and then follow this with a flux measurement with
a so-called “harmonics” coil that is insensitive, within manufacturing tol-
erances, to the reference harmonic. The normalized harmonic amplitudes
are determined from the Fourier amplitudes of this harmonics run using
Equation 11:

7%,

= — 14
MA,r™g; (14)

5
For some types of coils, particularly Morgan coils, there will be values of 5
for which g; = 0. In those cases, c¢; is indeterminate and cannot be measured
by that coil.
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3.3 Harmonic phases

The phases are not as easy to calculate. We follow methods outlined in [3]
and [2]. Equation 4 assumes the 7; coefficients have been calculated with
the probe oriented at § = 0; however, the probe rotation is usually started
at an angle which is not precisely determined. Also, since the reference coil
and harmonics coil(s) are wound on the same probe cylinder, the relative
orientations of each of these coils with respect to the starting point are
different. These angular offsets must all be taken into account.

Let’s define the offset angle for the reference coil as ¢, and the offset
angle for the harmonics coil as ¢p. This offset is measured with respect to
an arbitrary nominal orientation, since it will be seen that only the relative
offset ¢, — ¢, is important. Under a rotation ¢, the probe vertices z; are
transformed to z;e*®, and thus the probe geometry factors are transformed
to:

7;. — gjei(£j+j¢) (15)
The observed phases are then, using Equation 12 and the above,
Y = Xn +&n + 7 + 0y (16)
for the reference coil and
Yi=x5+ &+ 7T+ ion (17)

for the harmonics coil. One usually constructs a reference coil such that
&, = 0, so we drop it in the following discussion. If we now use Equation
16 to solve for x,, we will in general be disappointed to see that it doesn’t
equal zero as promised. We can remedy this problem by making use of the
transformation property of the harmonic phase under a rotation of angle a:

Xi = Xi +Jje (18)
We rotate our coordinate system such that

Xn =Y, —T—nd+na=0 (19)

Using this equation to solve for o, we transform the x; according to Equa-
tion 18, and then use Equation 17 to obtain

Xi = Y& -7 igntja
= - 2u-g (o) r-jen-s). o)

n



MTF-94-004 3/9/94; revised 1/19/98 7

3.3.1 Phase ambiguities

The situation is not as simple as Equation 20 may suggest. One may equally
well rotate the coordinate system so that x,, = 2mm, where m is any integer.
Each choice of m will result in a different value of @ and hence a different
set of x;:

2mj

X5(m) = x3(m = 0) + =L (21)

Inspection of the above equation shows that for a dipole magnet, there is no
problem, whereas for a quadrupole magnet, one has a two-fold ambiguity.
In a normal quadrupole, one expects to find y, pointing upward; however,
the quadrupole amplitude is also a maximum in the downward direction,
and if we select that as the reference direction, the phases of all the odd-j
harmonics will be flipped by 7. To avoid this ambiguity, one should start
the probe rotation at an angle such that when we choose m = 0, we get x»
pointing in the desired direction. This is usually accomplished by putting
a visual reference mark on the probe body and orienting that mark in a
standard direction during measurement setup.

Harmonics measurements of sextupole magnets require even greater care,
because there is a three-fold ambiguity.

3.3.2 Polarity reversal, clockwise rotation, probe insertion rever-
sal

Equation 20 needs to be modified if the polarity of the signal is reversed, or
if the rotation direction is clockwise rather than counter-clockwise, or if the
probe is inserted with the opposite orientation.

If the polarity of the signal is reversed, e.g., by flipping the power supply
leads, then the observed Fourier phases (including the reference) will change
by 7. It can also happen that the signal cable on one of the harmonic coils
or the reference coil can have an extra twist relative to the others. These
effects can be expressed as:

V- YT (22)

and

Yp = Yptw (23)
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If one rotates the probe clockwise, this is equivalent to replacing 6 by
—0, and the observed Fourier phases will be transformed to

¥i = ~¥; (24)

and

U = — V. (25)

The probe phases, ¢p and ¢,, are defined assuming a standard insertion
orientation into the magnet: suppose we put a reference mark on one end
of the probe, and install it in the magnet so the reference mark is near the
lead end of the magnet. We could also install the probe backwards, so that
the reference mark is now at the non-lead end. If we do that, however, the
probe phases will now be reversed, so we will now get

(8h— &) = — (3 — ). (26)

One may apply a combination of some or all of the above, e.g., polarity
reversal and clockwise rotation. The general expression for the phase is then
a modification of Equation 20:

2mjym

Xi = cl’l/Jj + com — %(Cfl/in + 0371') - C4j (¢h - ¢r) - fj + ) (27)

n

where ¢ is +1 for ccw rotation and —1 for cw; ¢5 is —1 for normal polarity
for the harmonics coil and 0 for reversed; c3is —1 for normal polarity for the
reference coil and 0 for reversed; and ¢4 is +1 for standard probe insertion
and —1 for reversed.

In practice, one should adopt a standard way of doing the measurement
and stick to it.

4 Morgan coils

Up to this point the discussion has been independent of specific probe ge-
ometry. We now consider the calculation of the v; factors for the commonly
used probe styles.

The most common style is illustrated in Figure la. This is known as a
Morgan coil[4]. For a coil of order m, there are 2m vertices with alternating
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directions e, equally spaced about the cylinder. Thus the spacing between
adjacent vertices is ¢ = 7/m, and the probe geometry factor is given by

2m—1

= S (L ek (28)

k=0

The summation reduces to a very simple form:
) 2m, ifj=(2n-1)m,n=1,2,3,...
= { 0, otherwise (29)

Note that the 7; are all real, and therefore all the {; = 0. In practice, one
generally uses a Morgan coil of order m to measure the reference amplitude
of a magnet with symmetry m. One can also use an assortment of Morgan
coils of various orders, all wound on the same probe cylinder, to collect a
reasonably complete set of harmonics.

5 Tangential coils

Figure 1b illustrates a second type of commonly used coil called a tangential
coil. It has two vertices which, unlike the Morgan coil, are asymmetrically
located with respect to the cylinder axis. For the coil shown in the figure,
the geometry factor is given by

;= elT/2H0)i _ gilm/2-6)i — 943+ i 54 (30)

Unlike the Morgan coil, the v; have nonvanishing values for most 7, pro-
vided @ is suitably chosen. This means that the harmonics can be measured
with a single tangential coil, rather than an assortment of Morgan coils.

5.1 Bucked tangential coils

The usefulness of tangential coils are improved by bucking them against a
Morgan coil which is sensitive to the dominant harmonic. In Figure lc we
show the arrangement for a tangential coil with N turns bucked against a
dipole (“belly band”) Morgan coil having M turns. By comparing Equa-
tions 29 and 30, we see that the bucking condition will be satisfied (y; = 0)
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if we choose @ such that M = Nsinf. In that case the geometry factors
become

v; = 2071 sin 50 4 v (1 — (—1)1) (31)

To obtain the harmonic amplitudes (per Equation 14) and phases (per Equa-
tion 20), we need to explicitly calculate g; and &;. Inspection of the above
shows that

e if 7 is odd:
g; =2 (1) 2sin j6 + M/N| (32)
£ =0 (33)

e if 7 is even:
g; = 2sin 56 (34)
§&=0G+1)r/2 (35)

However, since the amplitude is required to be positive, if g; < 0 accord-
ing to the above, then we set g; — |g;| and §; — & + 7.

5.2 Quadrupole-bucked tangential coils

The coil arrangement in the previous section is useful only in dipole magnets;
to use a tangential coil for measuring quadrupole magnets, one should buck
against a 4-pole Morgan coil (m = 2). Figure 1d shows an example of
quadrupole bucking. An N-turn tangential coil, centered about 45° is bucked
with an M-turn 4-pole Morgan coil. Considered separately, the geometry
factors are

ijm/4

v; = 2ie sin 70 (36)

for the tangential coil and

, {4, j=202n—-1),n=1,2,3,... )

VT 0, otherwise

for the Morgan coil. The bucking condition (cancellation of the quadrupole
term) will be satisfied if
Nys+ My, =0 (38)
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This establishes the requirement for the separation angle 8:
sin20 = 2M/N (39)
As an example, if we choose N = 4 M, then we see that § = 15°.
The total geometry factor is calculated using

M
v; = 7v4(tangential) + F’}’j(MOTga‘n) (40)

e Case j =2(2n—1):

v = 2e"7t2)7/4 gin 56 + 4M/N
= (=1)"2sinj0 4+ 4M/N (41)

We see that g; = 7; and §; = 0, unless v; < 0, in which case we let
gi = vl and & = 7.

e Other j:
v = 2¢i7t2)m/4 sin 76 (42)
g; = 2sinj6 (43)
& = (G+2)r/4 (44)

If g; < 0, then substitute g; — |g;| and §; — & + 7.

It has been suggested[5] that it is advisable to buck out the dipole com-
ponent as well because of probe motion imperfections. In that case, one
will have to construct an assembly of more than one bucking coil. As of
this writing, no quadrupole-bucked tangential coil has been built for use at

MTF.
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